Question number	Answer	Notes	Marks
1 (a) (i)	QRSP		2
	M1 Q and P correct		
	M2 R and S correct		
(ii)	M1 magnesium chloride	ACCEPT correct formulae	2
	M2 hydrogen	IGNORE incorrect formulae	
	M1 and M2 can be in either order		
(b)	M1 (add) (aqueous) silver nitrate / AgNO ₃	IGNORE refs to nitric acid	2
		do not award M1 if hydrochloric acid also added	
	M2 white precipitate (forms)	M2 dep on mention of silver nitrate in M1	

Question number	Answer	Notes	Marks
2 a	M1 (they/all) contain hydrogen and carbon (atoms)	Accept H and C Accept particles/elements in place of atoms Reject ions/molecules/compounds in place of atoms Reject element instead of they/all Reject H ₂ Reject mixture	2
	M2 only	Accept words with other meaning (eg solely/ exclusively) M2 DEP on reference to hydrogen and carbon even if M1 not awarded	
b	double bond	Accept multiple in place of double Accept contain C=C Ignore references to single bonds	1
С	А		1
d	B and E and F	All three correct scores 2 marks Two correct scores 1 mark If more than three answers given lose one mark for each error eg BCEF scores 1 mark	2
e	because it has no double bond(s) / has only single bonds / is saturated	Accept because only unsaturated compounds decolourise bromine water Accept because only alkenes decolourise bromine water Accept because it's not an alkene Accept because it's not unsaturated Accept because it's a (cyclo)alkane	1

	uesti umb		Answer			Notes		Marks
2	f	i	M1 for setting out calculation If division upside down or division by one or more atomic numbers, then 0/3	C <u>22.2</u> 12	Н <u>3.7</u> 1	Br <u>74.1</u> 80		
			M2 for obtaining ratio Accept any number of sig figs except one Allow 0.92	1.85	3.7	0.93		
			M3 for whole number ratio M3 DEP on M2	2	: 4	: 1		
			allow alternative method:					3
			M1 calculation of $M_r C_2 H_4 Br = 108$					
			M2 expression for % of <u>each</u> element eg C: 24/108 x100					
			M3 evaluation to show these equal 22.2%, 3.7%, 74.1%					
		ii	M1 $((2 \times 12) + (4 \times 1) + (1 \times 80) =)$ 108					
			M2 (216 \div 108 = 2) (so molecular formula is) C ₄ H ₈ Br ₂	correct	answer with no	working scc	ores 2	2

	uesti umbo		Answer	Notes	Marks
3	а	i	fuel oil		1
		ii	fuel oil		1
		iii	gasoline		1
	b	i	alumina / silica	Accept aluminosilicates/zeolites Accept aluminium oxide/silicon dioxide/silicon oxide/silicon (IV) oxide Accept correct formulae	1
		ii	M1 for correct formula - C_4H_8	Accept $C_4H_8 + C_4H_8$ for 2 marks	
			M2 for correct coefficient - 2	Award 1 mark for $4C_2H_4$	
				Award 1 mark for C_8H_{16}	
				Award 1 mark for two alkenes which have a total of 8C and 16H eg $C_3H_6\ +\ C_5H_{10}$	2

111	M1	over/greater supply of long-chain hydrocarbons/molecules/ heavy/heavier fractions / OWTTE	Accept long chain hydrocarbons/molecules heavy/heavier fractions are of less use (as fuels)	
	M2	high demand/more use for short- chain/small hydrocarbons/ light/lighter fractions / OWTTE	Accept answers in terms of petrol / fuel (for cars) Short chain hydrocarbon molecules are more useful/in greater demand than long chain hydrocarbons/molecules scores M1 and M2	3
	M3	Alkenes used to make polymers	Accept specific alkene and product eg ethene to make poly(ethene)/ethanol/alcohol	
C	M1 M2	forms sulfur dioxide (when burned) which causes specified problem for environment OR specified problem for humans	eg acid rain / damages trees / kills fish eg toxic / respiratory irritant / triggers asthma attacks Ignore harmful gas	2

Question number	Answer	Notes	Marks
3 d	$ \begin{array}{c} H & H & H & H \\ - C - C - C - C - C \\ H & CH_3 H & CH_3 \end{array} $	M1 for only <u>two</u> (of the four) carbon atoms both with two H eg -CH ₂ -CH ₂ -CH ₂ -CH ₂ - scores 0 M2 for (the other) <u>two</u> carbon atoms each with one H and one CH ₃ No M2 if methyl groups on 1st + 2nd, or on 3rd + 4th carbons in chain Do not penalise bonds to H of CH ₃ Max 1 if chain extended correctly Ignore brackets and n each carbon must have four bonds eg -CH ₂ -CH-CH ₂ - scores 0 if terminal Hs added max 1 0/2 if any double bonds shown	2

	estion mber	Answer	Notes	Marks
4	a i ii	C ₅ H ₁₂ CH ₂ Br	Accept $H_{12}C_5$ Ignore gap between C_5 and H_{12} Ignore names Ignore C_nH_{2n+2} Accep elements in any order Ignore molecular formula Ignore 2CH ₂ Br Penalise inappropriate use of upper or lower case letters or	1
			numbers(eg CH2Br / CH ₂ BR / CH ² Br)	
	b i ii	R <u>and</u> U D (C _n H _{2n})	Accept in either order	1 1
	С	C (compound R \rightarrow compound Q)		1

	stion nber	Answer	Notes	Marks
4	d	M1 H - C - C - H H - H H - H H - H H - H H - H H - H	Mark M1 and M2 independently Accept Br atoms in any positions so long as on different carbon atoms	2
			Accept ethylene dibromide	
	e i	Вг 	Ignore balancing in equation Ignore molecular formula	1
	ii	bromomethane		1
	111	UV or ultraviolet (light/radiation)	Accept sunlight Ignore all references to heat and temperature Ignore references to pressure	1
	i∨	D (substitution)		1

Question number	Answer	Notes	Marks
4 f i	M1 setting out division of each % by A_r OR evaluation C H F <u>36.4</u> <u>6.0</u> <u>57.6</u> 12 1 19 OR 3 6 3 M2 simplest whole number ratio (1:2:1 or ratio shown in notes for M1) M3 CH ₂ F C ₂ H ₄ F ₂	Award 0/3 if division by any atomic numbers / wrong way up / multiplication used Do not penalise roundings or minor misreads of % values (eg 56.7 for fluorine) Do not penalise use of FI in (i) If molecular masses used for H and/or F, lose M1 but M2 and M3 can be awarded: using 2 and 38 gives C ₂ H ₂ F using 2 and 19 gives CHF Using 1 and 38 gives C ₂ H ₄ F Working required for these answers M2 subsumes M1 Accept elements in any order Award 3 marks for correct final answer with no working Accept elements in any order Do not accept C ₂ H ₄ Fl ₂	3
		Total 15	marks